PAF awarded a  $32,912 research grant to Oleg Shchelochkov, M.D. and Charles P. Venditti MD, PhD at National Human Genome Research Institute, National Institutes of Health 

“Diversion of Isoleucine and Valine Oxidative Pathway to Reduce the Propionogenic Load in Propionic Acidemia.”

Patients with propionic acidemia require lifelong protein restriction. In addition to taking a protein restricted diet, many propionic acidemia patients are also prescribed medical formulas. This dietary approach aims to decrease the intake of four amino acids that can become propionic acid. These four amino acids – isoleucine, valine, threonine, and methionine – are called essential, because they cannot be made in the human body and need to be supplied from foods. Too much protein intake creates a situation where excess can lead to a buildup of propionic acid in the body. On the other hand, limiting these four amino acids too much can lead to poor growth. Therefore, patients’ diets are optimized to minimize propionic acid production while encouraging good growth. We wonder whether it is possible to increase dietary protein intake while minimizing the risk of propionic acid buildup.

To answer this question, we are planning to do a series of experiments in zebrafish. Why use zebrafish? Zebrafish share significant similarity to humans in how they process propionic acid. In addition, zebrafish reproduce and mature quickly, which are very important qualities to help search for new drugs that could be used to treat propionic acidemia. Our zebrafish are kept in a special building where the animals are being cared for by a dedicated team that includes scientists, veterinarians, engineers, aquatic specialists, and many others. They check on fish and feed them several times a day, maintain fish tanks, and keep their water very clean.

This type of facility is unique and had enabled our studies of metabolic diseases in zebrafish. Our ongoing studies have shown that zebrafish affected by metabolic diseases have symptoms that are very similar to patients. Even with treatment, affected fish have difficulty growing, get tired easily, have poor appetites and sometimes perish before adulthood. Using special genomic tools, we are planning to change in how the fish processes protein to direct it away from becoming propionic acid. As we make these changes to the biochemical pathways of propionic acidemia zebrafish, we will be carefully watching how these treatments improve their growth, development, appetite and survival. These experiments will help us understand how we can potentially reduce propionic acid toxicity while helping patients achieve a less restrictive diet.